
Patients 

Newly diagnosed patients with T1, N1-3, M0 or T2-4,  N0-3, M0 breast 

cancers (with cancer ≥ 1.5 cm), negative for estrogen and progesterone 

receptors, defined as < 1% nuclear staining by immunohistochemistry, and 

HER2/neu 0 or 1+ by immunohistochemistry, or HER2 non-amplified by FISH, 

were eligible for this trial.  Patients could not have had previous chemotherapy.   

Study Design and Treatment Plan 

The clinical protocol was approved by the Dana-Farber/Harvard Cancer 

Center IRB.  After written informed consent, blood was taken for research 

analyses, including germline BRCA1 genotyping for investigational purposes 

only.  A core biopsy was performed to obtain tumor tissue for study, and a radio-

opaque clip was placed in the tumor bed.  For patients with a clinically negative 

axilla, sentinel lymph node biopsy was required before therapy; for patients with 

a clinically positive axilla, either a sentinel node biopsy or a needle aspiration 

was performed.  If the needle aspiration showed malignant cells, no sentinel 

lymph node biopsy was required. Patients received 4 treatments of cisplatin at 

75mg/m2 every 21 days. Patients then received definitive surgery, including an 

axillary lymph node dissection in patients with positive fine needle aspirate or 

sentinel lymph node biopsy.  The pathology specimen was evaluated for 

chemotherapy response, with focused sampling of the tumor bed marked by the 

radio-opaque clip.  The protocol stipulated that standard adjuvant therapy should 



then be administered, with the regimen left to the discretion of the treating 

physician.    

 

Sample Size Justification and Statistical Methods 
 

 The protocol document specified that the primary endpoint would be 

clinical response rate (clinical complete or partial response using RECIST 

criteria; the responses were mostly based on MRI but sometimes based on 

palpation).  The study had a two stage design:  if fewer than 4 of the first 12 

patients treated had a clinical response then accrual of the study was to close; if 

4 or more treated had a clinical response then an additional 15 patients were to 

be entered (for a total of 27 treated patients); and if at least 10 patients out of the 

27 had a clinical response then the cisplatin treatment was to be deemed worthy 

of further study in triple negative patients.  (This design was stated to have an 

alpha level of 0.025 if the true clinical response rate is 20% and a power of 98% 

if the true clinical response rate is 60%, with calculations based on exact 

binomial distributions).  The protocol also had a stopping rule based on pCRs:  if 

none were observed in the first 12 patients then accrual would end, and the 

protocol implied that 4 pCRs out of the 27 patients entered would be considered 

acceptable. For both overall clinical response and pCR, the protocol specified 

that conditional 95% confidence intervals (CIs) were to be used because of the 

two stage design (using the method of Atkinson and Brown26).  The protocol had 

no stopping rule based on major pathologic response (Miller-Payne 3, 4, or 5) 

and hence had no rule for calculating a CI for this endpoint.  In order to be 



consistent with methods used for the other outcome measures, we assumed a 

two stage design for major pathologic response similar to that for clinical 

response and used a conditional CI (which turned out to be 1% larger than the 

unconditional CI). 

 Fisher exact tests were used to evaluate if the three-valued variable p53 

or the binary variables (axillary lymph node positivity, BRCA1 methylation, 

p63/p73>2.0, or any of the binary variables based on p53) were associated with 

any of the response outcome measures.  Continuous variables were divided into 

quartiles and an ordered Fisher exact test (equivalent to an exact Wilcoxon rank 

sum test) was used to test if any of these variables were associated with 

response.  Step up logistic regressions were used to explore the association of 

combinations of variables and response.  The Wilcoxon rank sum test was also 

used to evaluate whether BRCA1 expression levels were different in tumors with 

and without BRCA1 promoter methylation. The Spearman rank correlation was 

used to evaluate the relationship of ID4 and BRCA1 mRNA.  All P values were 

two-sided.  Unless otherwise stated, P values are not adjusted for multiple 

comparisons.  The plan was to use Holm’s method of adjustment for multiple 

comparisons for the non-gene array data. Since only one variable (age) was 

significant after this adjustment, the Holm’s method is equivalent to the 

Bonferroni method. 



Microarray-based gene expression measurements and gene signatures 

were tested for association with response using the Pearson correlation test; P-

values are two-sided and are uncorrected unless stated otherwise. 

Specimen Analysis 

Histologic sections of all pre and post-treatment specimens were reviewed 

by a single pathologist (A.R.), using the Miller-Payne scale25 to quantify 

pathological response to treatment. The Miller-Payne (MP) scale is based on the 

estimated percent reduction in invasive tumor volume and cellularity in the 

breast: MP1, no reduction in tumor; MP2, modest reduction up to 30%; MP3, 

reduction of 30-90%; MP4, >90% reduction but with scant residual invasive 

disease; MP5, complete response with no residual invasive disease.  The MP 

score has been shown to correlate with both overall and disease-free survival.25 

The Miller-Payne response measure was modified to include evaluation of 

residual disease in the axillary nodes, in addition to the breast, to determine the 

response score.  BRCA1 genotyping for research purposes was performed by 

the Exon Grouping Analysis (EGAN) method on germline DNA extracted from 

peripheral blood leukocytes.    

 

 

 



EGAN Genotyping 
EGAN is based on Conformation Specific Gel Electrophoresis 

(CSGE)25,26. All coding exons and surrounding intronic sequences were amplified 
by PCR and analyzed on ABI-377 instruments. PCR fragments with aberrant 
mobility were sequenced. This method has been compared directly to standard 
sequencing using a blinded patient set and has shown a sensitivity of 97.4% in 
detecting BRCA1 and BRCA2 sequence changes (A. Miron, manuscript in 
preparation).  

Array Analysis 
For gene expression array analysis, two 5µm frozen sections were stained 

with hematoxylin and eosin, manually scraped to remove normal stroma and 
enrich for tumor cells, and RNA was extracted using the Absolutely RNA 
Nanoprep kit (Stratagene).  First round linear amplification was performed using 
RiboAmp HS kit (Arcturus), followed by in vitro transcription using the Affymetrix 
IVT kit. Gene expression profiling was then performed on Affymetrix U133 Plus 
2.0 microarrays at the Dana-Farber/Harvard Cancer Center array core facility. 
The complete gene expression array dataset will be available on the NCBI GEO 
database (accession submission in progress).   

Quantitative RT‐PCR 
For quantitative RT-PCR, tumor cells were microdissected from two 7µm 

frozen sections and RNA was extracted using the Micro RNA Isolation kit 
(Stratagene).   Six samples did not have adequate material for qRT-PCR analysis.  
cDNA was synthesized from total RNA using random hexamer primers and the 
SuperScript II system for RT-PCR (Invitrogen).  Q-PCR analysis was carried out 
using iQTM SYBR Green mix (Bio-Rad). The RPLP0 transcript was used as an 
internal control for normalization of relative expression levels. Primers used for 
qPCR were designed across exons to avoid amplification of genomic DNA. Oligo 
sequences for BRCA1 cDNA primers: E1F 
(AGGAGGCCTTCACCCTCTGCTCT), E2R 
(TTCAACGCGAAGAGCAGATAAATCCA), E16F 
(TCAACAAAAGAATGTCCATGGTGGTGTC), E17R 
(GTGATGTGGTGTTTTCTGGCAAACTTGT), E19F 
(GGGTGACCCAGTCTATTAAAGAAAGAAAAATGCT) and E20R 
(TTCTTCCATTGACCACATCTCCTCTGACTT). Primers used for the RPLP0 
housekeeping gene were: RPLP0F (ATCAACGGGTACAAACGAGTCCTG) and 
RPLP0R (AAGGCAGATGGATCAGCCAAGAAG).  Primer sequences for ΔNp63 
were: ΔNp63F (GGAAAACAATGCCCAGACTC) and ΔNp63R 
(GTGGAATACGTCCAGGTGGC). Primer sequences for TAp73: TAp73F 
(GCACCACGTTTGAGCACCTCT) and TAp73R 
(GCAGATTGAACTGGGCCATGA).  Sequencing of the p53 coding region was 
performed on cDNA from microdissected tumor cells using the following primers: 
p53-1F (CAAGCAATGGATGATTTGATG), p53-1R 
(CTTCTTTGGCTGGGGAGAG), p53-2F (CACATGACGGAGGTTGTGAGG) and 



p53-2R (TTTTTATGGCGGGAGGTAGA). BRCA1 promoter methylation was 
performed by methylation-specific PCR as in 27. 

Tumor .subtype determination  
To determine tumor subtype, a reference set of 61 primary breast tumor 

samples (52 independent tumors and 9 array replicates) were prepared using the 
same methodology as the trial samples, including an initial round of linear 
amplification, and expression profiling on the same microarray platform. 
Normalized expression values were calculated from raw data using the RMA 
algorithm.  Reference samples and trial samples were processed together. The 
552 "intrinsic" genes19were annotated by clone ID, which we mapped to 473 
unique UniGene identifiers using the SOURCE database 
(http://smd.stanford.edu/cgi-bin/source/sourceSearch). Using annotation data 
from Bioconductor, 388 of these Unigene identifiers were mapped to 1032 probe 
sets on our microarray platform. For each of the 388 “intrinsic” genes, we 
eliminated redundant measurements by retaining only a single probe set with the 
highest variance of log2 intensity over all samples. 

The expression value of each gene was centered by subtracting its mean 
over the 61 reference samples. To assign subtypes to the reference set we first 
clustered the samples in the reference set alone (supplemental Figure 1). We 
identified the five most distinct clusters, each of which we assigned to a subtype 
by choosing the highest Pearson correlation coefficient between the cluster 
centroid and the centroids of Sorlie et al.19 To assign subtypes to the trial 
samples, we clustered the trial samples together with the reference samples, 
again centering the genes using only the reference samples. All clustering was 
performed using 1 - Pearson correlation distance and average linkage. The R 
scripts used to perform this analysis follow on the next page.
. 

 



Clustering Analysis For Cisplatin Trials

November 17, 2008

1 Clustering Based on Intrinsic Genes

load platinum dataset, processed by RMA and dChip (implemented in R, without log trans-
formation).

> library(affy)

> library(squash)

> load("data/platinum.rma.RData")

Load intrinsic genesets (Sorlie et al. PNAS July 8, 2003)

> load("data/Intrinsic_cent_pnas.RData")

> dim(Centroids)

[1] 552 5

Now we retrieve the expression profile of these intrinsic genes from platinum dataset,
using non-cisplatin treated sample only. In case multiple Affymetrix probesets mapped to one
intrinsic gene, the probeset with the largest cross-sample variance are selected to represent
the gene.

> profile <- exprs(platinum.rma)

> rownames(profile) <- mget(rownames(profile), hgu133plus2UNIGENE, ifnotfound = NA)

> profile <- profile[rownames(profile) %in% rownames(Centroids), ]

> profile <- profile[order(apply(profile, 1, function(x) var(x, na.rm = T)), decreasing =

+ ]

> profile <- profile[!duplicated(rownames(profile)), ]

> outliers <- c("AR2006110811.CEL", "AR2006110825.CEL", "AR2007010390.CEL", "AR2007010391.CEL")

> profile <- profile[, which(!colnames(profile) %in% outliers)]

> indx <- which(!pData(platinum.rma)[colnames(profile), 15])

> profile <- profile[, indx]

> colnames(profile) <- pData(platinum.rma)[colnames(profile), 2]

> dim(profile)

[1] 388 61

First we retried expression profile of 388 intrinsic genes (about 70%) in 61 samples from
platinum dataset. The expression profile of each gene wass centered by the mean of all samples.
Hierarchical clustering was performed based Pearson’s correlation matrix and average linkage
method, as described in the original study.
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> profile <- t(apply(profile, 1, function(x) x - mean(x)))

> C.ref <- hclust(cor.dist(t(profile), method = "pearson"), method = "average")

> dhc <- as.dendrogram(C.ref)

> colLab <<- function(n) {

+ if (is.leaf(n)) {

+ a <- attributes(n)

+ i <<- i + 1

+ attr(n, "nodePar") <- c(a$nodePar, list(lab.col = mycols[attr(n, "label")],

+ lab.cex = 1, pch = ""))

+ }

+ n

+ }

> mycols <- sapply(cutree(C.ref, k = 5), function(x) switch(x, 4, 3, 2, 5, 6))

> j <- sapply(colnames(profile), function(x) which(pData(platinum.rma)[, 2] == x))

> mycols[colnames(profile)[which(pData(platinum.rma)[j, 13] > 2)]] <- "#FDD017"

> mycols[colnames(profile)[which(pData(platinum.rma)[j, 13] < 2)]] <- 1

> i <- 0

> dhc <- dendrapply(dhc, colLab)

> par(las = 1, cex = 1.2, font = 2, mar = c(6, 6, 4, 2) + 0.1)

> plot(dhc, edge.root = F)
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We compute the centroids for each of the five clusters in previous analysis and compared
them to the original intrinsic centroids reported by Sorlie et al. Each cluster was assigned to a
certain intrinsic subtype to which it indicated the highest correlation. However for cluster 4,
its centroid correlated with ”Lum A” with a coefficient of 0.369, which was the highest among
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the 5. But since cluster 1 has a much higher correlation to ”Lum A” centroids, we assigned
this cluster to ”Lum B”.

> plat.cent <- sapply(1:4, function(x) apply(profile[, which(cutree(C.ref, k = 5) ==

+ x)], 1, mean))

> plat.cent <- cbind(plat.cent, profile[, which(cutree(C.ref, k = 5) == 5)])

> x <- apply(plat.cent, 2, function(x) cor(x, Centroids[rownames(plat.cent), ]))

> rownames(x) <- colnames(Centroids)

> x

[,1] [,2] [,3] [,4] [,5]

Lum A 0.6380363 -0.32876483 -0.58017200 0.36874239 -0.03850577

Lum B -0.1945348 0.29846881 0.05814220 0.01613455 -0.10129076

ERBB2 -0.3224728 0.40150529 0.14587610 -0.08970220 0.02086657

Basal -0.6573541 0.03449855 0.76574421 -0.45979608 0.10951468

Norm 0.1057813 -0.21191810 0.01351511 -0.17130957 0.20104769

> plat.clust <- c("Lum A", "ERBB2", "Basal", "Lum B", "Norm")

Now we redo hierarchical clustering in the pooled dataset with both reference set and
cisplatin trials. Note the gene are still centered by mean of reference set.

> profile <- exprs(platinum.rma)

> rownames(profile) <- mget(rownames(profile), hgu133plus2UNIGENE, ifnotfound = NA)

> profile <- profile[rownames(profile) %in% rownames(Centroids), ]

> profile <- profile[order(apply(profile, 1, function(x) var(x, na.rm = T)), decreasing =

+ ]

> profile <- profile[!duplicated(rownames(profile)), ]

> outliers <- c("AR2006110811.CEL", "AR2006110825.CEL", "AR2007010390.CEL", "AR2007010391.CEL")

> profile <- profile[, which(!colnames(profile) %in% outliers)]

> indx <- which(!pData(platinum.rma)[colnames(profile), 15])

> colnames(profile) <- pData(platinum.rma)[colnames(profile), 2]

> profile <- t(apply(profile, 1, function(x) x - mean(x[indx])))

> C <- hclust(cor.dist(t(profile), method = "pearson"), method = "average")

> dhc <- as.dendrogram(C)

> j <- sapply(colnames(profile), function(x) which(pData(platinum.rma)[, 2] == x))

> type.ref <- plat.clust[cutree(C.ref, k = 5)]

> names(type.ref) <- names(cutree(C.ref, k = 5))

> mat <- data.frame(subtype = as.factor(type.ref[names(j)][colnames(profile)]), response =

+ 13] > 2, "#000000", "#696969"))

> rownames(mat) <- names(j)

> mat[, 1] <- sapply(cutree(C, k = 5), function(x) switch(x, 4, 3, 2, 5, 6))

> mat[grep("P", rownames(mat)), 1] <- "#DCDCDC"

> mat[, 2] <- as.vector(mat[, 2])

> mat[which(is.na(mat[, 2])), 2] <- "#DCDCDC"

> par(las = 1, cex = 1.2, font = 2, mar = c(6, 6, 4, 2) + 0.1)

> dendromat(dhc, mat, edgePar = list(lwd = 2), nodePar = list(cex = 2, pch = "", font = 2))
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